The truly symmetrical doubly-bridging mode of trimethylphosphine in a dinuclear rhodium complex \dagger

Thomas Pechmann, Carsten D. Brandt and Helmut Werner*
Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
E-mail: helmut.werner@mail.uni-wuerzburg.de; Fax: ++49-931-888-4623

Received (in Cambridge, UK) 30th January 2003, Accepted 14th March 2003
First published as an Advance Article on the web 16th April 2003

The dinuclear complex $\left[\mathrm{Rh}_{2} \mathrm{I}_{2}\left(\mu-\mathrm{CPh}_{2}\right)_{2}\left(\mu-\mathrm{PMe}_{3}\right)\right]$ was prepared from the $\mathrm{Rh}_{2}(\mathrm{acac})_{2}$ counterpart and $\mathrm{Me}_{3} \mathrm{SiI}$ and shown crystallographically to contain the PMe_{3} ligand in a truly symmetrical bridging position; a new synthetic route to migrate more bulky phosphines such as PPh_{3} and PiPr_{3} from a terminal into a bridging site is also described.

In contrast to CO and isocyanides, tertiary phosphines such as PMe_{3} or PPh_{3} are assumed to coordinate to transition-metal centres in a terminal but not in a doubly-bridging mode. ${ }^{1}$ In attempting to obtain a dinuclear palladium compound with $\mathrm{Pd}\left(\mu_{2}-\mathrm{PF}_{3}\right) \mathrm{Pd}$ as the core unit, Balch and coworkers reported in 1990 the preparation and structural characterization of a cationic Pd_{3} complex consisting of a nearly equilateral triangle of palladium atoms capped by the triply bridging phosphorus atom of $\mathrm{PF}_{3} .{ }^{2}$ More recently, we found in the context of our work on mono- and di-nuclear carbenerhodium(I) complexes, ${ }^{3}$ that the bis(acac) compound $\mathbf{1}$ reacts with trimethylphosphine by ligand exchange and formation of $\mathbf{2}$. While according to the NMR data there was no doubt, that the PMe_{3} ligand should occupy a symmetrical bridging position, the X-ray crystal structure analysis of $\mathbf{2}$ revealed that in the solid the distances between phosphorus and the two rhodium centres differ by 0.30 Å. ${ }^{4}$
To explore whether by replacing the bidentate acac ligands for monodentate chloro ligands the situation would change and a complex with a truly symmetrical $\mathrm{Rh}\left(\mu-\mathrm{PMe}_{3}\right) \mathrm{Rh}$ bridge would be formed, we treated compound 2 with $\mathrm{Me}_{3} \mathrm{SiCl}$ and isolated a product which gave a correct elemental analysis for $\left[\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{CPh}_{2}\right)_{2}\left(\mu-\mathrm{PMe}_{3}\right)\right]$. While we anticipated, owing to the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, that the required complex had been obtained, a crystallographic study confirmed that in the solid two dinuclear moieties are connected through two bridging chlorides to afford a Rh_{4} species with a chain-like $\left[\mathrm{ClRh}_{2}(\mu-\mathrm{Cl})_{2} \mathrm{Rh}_{2} \mathrm{Cl}\right]$ core. ${ }^{5}$ Although cryoscopic measurements indicated that at low concentrations a cleavage of the Rh_{4} into two Rh_{2} units probably occurs, the problem of whether a discrete compound of the composition $\left[\mathrm{Rh}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{CPh}_{2}\right)_{2}(\mu-\right.$ PMe_{3})] (where X is a monodentate ligand) with a truly symmetrical $\mathrm{Rh}\left(\mu-\mathrm{PMe}_{3}\right) \mathrm{Rh}$ bridge exists remained unresolved.
We have now found that, by using $\mathrm{Me}_{3} \mathrm{SiBr}$ or $\mathrm{Me}_{3} \mathrm{SiI}$ instead of $\mathrm{Me}_{3} \mathrm{SiCl}$, the final goal can be achieved. Treatment of $\mathbf{2}$ with an equimolar amount of $\mathrm{Me}_{3} \mathrm{SiBr}$ or $\mathrm{Me}_{3} \mathrm{SiI}$ in toluene at room temperature leads to the replacement of one acac ligand for one bromide or iodide and gives compounds $\mathbf{3}$ and $\mathbf{4}$ as deeply coloured solids in nearly quantitative yields (Scheme 1). Similarly to the corresponding acac(chloro) derivative $[\mathrm{ClRh}(\mu-$ $\left.\left.\mathrm{CPh}_{2}\right)_{2}\left(\mu-\mathrm{PMe}_{3}\right) \mathrm{Rh}\left(\kappa^{2}-\mathrm{acac}\right)\right], 4$ the NMR spectroscopic data of 3 and 4 reveal that the trimethylphosphine ligand occupies a semi-bridging position. The most typical feature is the doublet of doublet resonance in the ${ }^{31} \mathrm{P}$ NMR spectra which appears at $\delta-27.3$ (3) and -22.3 (4) with ${ }^{31} \mathrm{P}-103 \mathrm{Rh}$ coupling constants of 157.7 and $64.4(\mathbf{3})$ and 165.2 and $53.5 \mathrm{~Hz}(4)$, respectively.

[^0]

The reactions of 2 with $\mathrm{Me}_{3} \mathrm{SiBr}$ and $\mathrm{Me}_{3} \mathrm{SiI}$ in the molar ratio of 1:2 proceed more slowly and afford in toluene after 24 $\mathrm{h}(\mathrm{X}=\mathrm{Br})$ or $2 \mathrm{~h}(\mathrm{X}=\mathrm{I})$ at room temperature the dibromo and diiodo complexes 5 and 6 in $90-92 \%$ isolated yield. In contrast to $\left[\left\{\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{CPh}_{2}\right)_{2}\left(\mu-\mathrm{PMe}_{3}\right)\right\}_{2}\right]$, the ${ }^{31} \mathrm{P}$ NMR spectra of 5 and 6 (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) are independent on the concentration of the solution and display in each case a sharp triplet at $\delta-18.3$ (5) and -20.8 (6), respectively. Moreover, cryoscopic measurements indicate that no dimerisation (as it happens in the case of the dichloro compound) takes place.
The hope that the PMe_{3} ligand occupies even in the solid a truly symmetrical bridging position was confirmed by an X-ray crystal structure analysis of $6 . \dagger \ddagger$ As shown in Fig. 1, the molecule contains a C_{2} axis passing through the phosphorus atom and the midpoint of the $\mathrm{Rh}-\mathrm{Rh}$ distance. The $\mathrm{I}-\mathrm{Rh}-\mathrm{Rh}-\mathrm{I}$

Fig. 1 Molecular structure of compound 6. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Rh}(1)-\mathrm{C}(1) 1.999(9), \mathrm{Rh}(1)-\mathrm{C}(1 \mathrm{~A}) 2.004(9), \mathrm{Rh}(1 \mathrm{~A})-\mathrm{C}(1)$ 2.004(9), $\mathrm{Rh}(1)-\mathrm{Rh}(1 \mathrm{~A}) \quad 2.5040(14), \mathrm{Rh}(1)-\mathrm{P}$ 2.412(3), $\mathrm{Rh}(1 \mathrm{~A})-\mathrm{P}$ 2.412(3), $\mathrm{Rh}(1)-\mathrm{I}(1) \quad 2.5983(10) ; \mathrm{Rh}(1)-\mathrm{C}(1)-\mathrm{Rh}(1 \mathrm{~A}) 77.4(3), \mathrm{C}(1)-$ $\mathrm{Rh}(1)-\mathrm{C}(1 \mathrm{~A}) 86.7(4), \mathrm{I}(1)-\mathrm{Rh}(1)-\mathrm{Rh}(1 \mathrm{~A}) 174.37(2), \mathrm{Rh}(1)-\mathrm{P}-\mathrm{Rh}(1 \mathrm{~A})$ 62.54(10), $\mathrm{C}(1)-\mathrm{Rh}(1)-\mathrm{P}$ 89.6(3), $\mathrm{C}(1 \mathrm{~A})-\mathrm{Rh}(1)-\mathrm{P}$ 89.5(3), $\mathrm{I}(1)-\mathrm{Rh}(1)-\mathrm{P}$ 126.89(6), $\mathrm{I}(1)-\mathrm{Rh}(1)-\mathrm{C}(1) 126.1(3), \mathrm{I}(1)-\mathrm{Rh}(1)-\mathrm{C}(1 \mathrm{~A}) 125.7(3), \mathrm{C}(1)-$ $\mathrm{Rh}(1)-\mathrm{Rh}(1 \mathrm{~A}) 51.4(2), \mathrm{C}(1 \mathrm{~A})-\mathrm{Rh}(1)-\mathrm{Rh}(1 \mathrm{~A}) 51.2(3), \mathrm{P}-\mathrm{Rh}(1)-\mathrm{Rh}(1 \mathrm{~A})$ 58.73(5).
axis is nearly linear with bond angles $\operatorname{Rh}(1)-\operatorname{Rh}(1 \mathrm{~A})-\mathrm{l}(1 \mathrm{~A})=$ $\mathrm{Rh}(1 \mathrm{~A})-\mathrm{Rh}(1)-\mathrm{I}(1)=174.37(2)^{\circ}$. The Rh-P bond lengths in 6 are 2.412(3) and thus in between those of 2 (2.2707(7) and $2.5700(8) A)^{4}$
After we confirmed that PMe_{3} can behave as a bridging ligand, we also succeeded with transferring the more bulky PiPr_{3} from a terminal into a bridging position. In our previous studies on the reactivity of $\mathbf{7}$ (the precursor of compound $\mathbf{1}$) toward Lewis bases, we discovered that this complex reacts with PiPr_{3} to give trans- $\left[\mathrm{RhCl}\left(=\mathrm{CPh}_{2}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right] .{ }^{3}$ In contrast, treatment of $\mathbf{1}$ with PiPr_{3} does not lead to cleavage of the $\mathrm{Rh}(\mu-$ $\left.\mathrm{CPh}_{2}\right) \mathrm{Rh}$ bridges and affords by migration of one acac ligand from one metal center to the next the interesting mixed-valence compound $\mathbf{8}$ in excellent yield Scheme 2. ${ }^{6}$ Since it could be conceivable that this reaction proceeds via the phosphinebridged species $\left[\mathrm{Rh}_{2}\left(\mathrm{~K}^{2}-\mathrm{acac}\right)_{2}\left(\mu-\mathrm{CPh}_{2}\right)_{2}\left(\mu-\mathrm{PiPr}_{3}\right)\right]$, we attempted to trap this intermediate by replacing the acac ligands for chloride. A clean reaction occurred, indeed, if a solution of HCl in benzene was dropped under vigorous stirring to a solution of $\mathbf{8}$ in the same solvent at room temperature. After removal of the volatile materials, the required complex $\mathbf{1 0}$ was isolated as a red, moderately air-stable solid in 91% yield. In the same way, the PPh_{3} counterpart $\mathbf{1 1}$ could be generated from 9 ; it was characterized by spectroscopic techniques. The ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 0}$ and $\mathbf{1 1}$ display a triplet for the $C \mathrm{Ph}_{2}$ carbon atoms at $\delta 180.7$ (10) and 191.2 (11) with a ${ }^{13} \mathrm{C}-{ }^{103} \mathrm{Rh}$ coupling constant of 28.6 Hz . Since the ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{1 0}$ and $\mathbf{1 1}$ also show a sharp triplet at, respectively, $\delta 14.9$ (10) and 9.8 (11), there is no doubt that the more bulky phosphines PiPr_{3} and PPh_{3} can equally be linked to two metal centres in a bridging position. That this mode of coordination might be realized also in other di-nuclear complexes was recently pointed out by Braunstein and Boag, ${ }^{7}$ who took the isolobal analogy of $\mathrm{SiR}_{3}{ }^{-}$

Scheme 2
and PR_{3} into consideration. Moreover, the discovery by Reau et al. ${ }^{8}$ that the phosphorus atom of substituted phospholes can bridge two palladium centres strongly supports this prediction.

Notes and references

\ddagger Selected characterization data: 3: Yield: 92%, mp $144{ }^{\circ} \mathrm{C}$ dec. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{C}}(100.6 \mathrm{MHz}) 174.1\left(\mathrm{ddd}, J(\mathrm{Rh}, \mathrm{C})=30.5, J\left(\mathrm{Rh}^{\prime}, \mathrm{C}\right)=21.0\right.$, $\left.J(\mathrm{P}, \mathrm{C})=4.8 \mathrm{~Hz}, C \mathrm{Ph}_{2}\right) ; \delta_{\mathrm{P}}(162.0 \mathrm{MHz})-27.3(\mathrm{dd}, J(\mathrm{Rh}, \mathrm{P})=157.7$, $\left.J\left(\mathrm{Rh}^{\prime}, \mathrm{P}\right)=64.4 \mathrm{~Hz}\right) .4$: Yield 94%, mp $116{ }^{\circ} \mathrm{C}$ dec. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{C}}$ $(100.6 \mathrm{MHz}) 171.5\left(\mathrm{ddd}, J(\mathrm{Rh}, \mathrm{C})=31.5, J\left(\mathrm{Rh}^{\prime}, \mathrm{C}\right)=20.0, J(\mathrm{P}, \mathrm{C})=4.3\right.$ $\left.\mathrm{Hz}, C \mathrm{Ph}_{2}\right) ; \delta_{\mathrm{P}}(162.0 \mathrm{MHz})-22.3\left(\mathrm{dd}, J(\mathrm{Rh}, \mathrm{P})=165.2, J\left(\mathrm{Rh}^{\prime}, \mathrm{P}\right)=53.5\right.$ Hz). 5: Yield 92%, mp $63{ }^{\circ} \mathrm{C}$ dec. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta_{\mathrm{C}}(100.6 \mathrm{MHz}) 188.6$ $\left(\mathrm{m}, C \mathrm{Ph}_{2}\right) ; \delta_{\mathrm{P}}(162.0 \mathrm{MHz})-18.3(\mathrm{t}, J(\mathrm{Rh}, \mathrm{P})=108.5 \mathrm{~Hz}) .6$: Yield 90%, $\mathrm{mp} 80^{\circ} \mathrm{C}$ dec. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{C}}(100.6 \mathrm{MHz}) 184.9\left(\mathrm{~m}, C \mathrm{Ph}_{2}\right) ; \delta_{\mathrm{P}}(121.5$ $\mathrm{MHz})-20.8(\mathrm{t}, J(\mathrm{Rh}, \mathrm{P})=105.2 \mathrm{~Hz}) .10$: Yield $91 \%, \mathrm{mp} 119^{\circ} \mathrm{C}$ dec. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{C}}(100.6 \mathrm{MHz}) 180.7\left(\mathrm{t}, J(\mathrm{Rh}, \mathrm{C})=28.6 \mathrm{~Hz}, C \mathrm{Ph}_{2}\right) ; \delta_{\mathrm{P}}(162.0$ $\mathrm{MHz}, 263 \mathrm{~K}) 14.9(\mathrm{t}, J(\mathrm{Rh}, \mathrm{P})=92.6 \mathrm{~Hz}) .11: \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{C}}(100.6$ $\mathrm{MHz}) 191.2\left(\mathrm{t}, J(\mathrm{Rh}, \mathrm{C})=28.6 \mathrm{~Hz}, C \mathrm{Ph}_{2}\right) ; \delta_{\mathrm{P}}(162.0 \mathrm{MHz}) 9.8(\mathrm{t}, J(\mathrm{Rh}, \mathrm{P})$ $=103.6 \mathrm{~Hz}$).

Crystal data for 6: $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{I}_{2} \mathrm{PRh}_{2} \cdot 2 / 3 \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}$, crystal size 0.30×0.17 $\times 0.16 \mathrm{~mm}$, trigonal, space group $R-3 c$ (no. 167), $a=22.9416(17), b=$ $22.9416(17), c=31.230(3) \AA, V=14235(2) \AA^{3}, Z=18, D_{\mathrm{c}}=1.904 \mathrm{~g}$ $\mathrm{cm}^{-3}, \mu=3.066 \mathrm{~mm}^{-1}, \lambda=0.71073 \AA, T=173(2) \mathrm{K}, F(000)=7836$, for 2817 independent reflections, $R_{1}=0.0658[I>2 \sigma(I)]$, $\mathrm{w} R_{2}=0.1372$, GOF on $F^{2}=1.303$, diff. peak/hole $\left(\mathrm{e} \AA^{-3}\right)=1.389 /-1.044$. Data were collected on a Bruker Smart Apex diffractometer and the structure was solved using the program SHELXL-97. CCDC 202931. See http:// www.rsc.org/suppdata/cc/b3/b301251d/ for crystallographic files in CIF or other electronic format.

1 W. Levason and C. A. McAuliffe, Phosphine, Arsine and Stibine Complexes of the Transition Elements, Elsevier, Amsterdam, 1979; C. A. McAuliffe, in Comprehensive Coordination Chemistry, ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, Vol. 2, p. 989.
2 A. L. Balch, B. J. Davis and M. M. Olmstead, J. Am. Chem. Soc., 1990, 112, 8592.
3 P. Schwab, N. Mahr, J. Wolf and H. Werner, Angew. Chem., Int. Ed Engl., 1993, 32, 1480; P. Schwab, N. Mahr, J. Wolf and H. Werner, Angew. Chem., Int. Ed. Engl., 1994, 33, 97; H. Werner, J. Organomet. Chem., 1995, 500, 331; P. Schwab, J. Wolf, N. Mahr, P. Steinert, U. Herber and H. Werner, Chem. Eur. J., 2000, 6, 4471
4 T. Pechmann, C. D. Brandt and H. Werner, Angew. Chem., Int. Ed., 2000, 39, 3909.
5 T. Pechmann, C. D. Brandt, C. Röger and H. Werner, Angew. Chem., Int. Ed., 2002, 41, 2301.
6 U. Herber, B. Weberndörfer and H. Werner, Angew. Chem., Int. Ed. 1999, 38, 1609; U. Herber, T. Pechmann, B. Weberndörfer, K. Ilg and H. Werner, Chem. Eur. J., 2002, 8, 309.
7 P. Braunstein and N. M. Boag, Angew. Chem., Int. Ed., 2001, 40 2493.

8 M. Sauthier, B. Le Guennic, V. Deborde, L. Toupet, J.-F. Halet and R. Reau, Angew. Chem., Int. Ed., 2001, 40, 234.

[^0]: \dagger Electronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b301251d/

